domingo, 15 de mayo de 2011

Cociente de un disco

Hemos visto en clase que si $D=\{(x,y);x^2+y^2\leq 1\}$ es el disco unidad, es posible, identificando puntos opuesto de $S^1$, probar que el plano proyectivo $RP^2$ es homeomorfo a un cociente del disco $D$.


Esta entrada deja como ejercicio que si cambiamos un poco la relación de equivalencia, a qué sería homeomorfo el disco. La relación es la que identifica los puntos de $S^1$ que tienen la misma abcisa (los demás puntos, sólo están relacionados consigo mismos).

No hay comentarios:

Publicar un comentario