martes, 14 de octubre de 2014

Cálculo del interior de un conjunto para dos topologías


En el conjunto de los número naturales ${\mathbb N}$, consideramos dos topologías:
$$\tau_1=\{\emptyset,{\mathbb N}\}\cup\{A_n: n\in {\mathbb N}\}.$$
$$\tau_2=\{\emptyset\}\cup \{B_n:n\in {\mathbb N}\}.$$Aquí $A_n=\{1,2,\ldots,n\}$ y $B_n=\{n,n+1,\ldots\}$.

Hallamos el interior,   exterior y frontera del conjunto $C=\{3,4\}$.

Empezamos con la topología $\tau_1$. El interior es el conjunto abierto más grande dentro de $C$. Ya ningún conjunto del tipo $A_n$ está incluido en $C$, el único abierto es $\emptyset$. Por tanto, $int(C)=\emptyset$. Para el exterior, hallamos el interior del complementario de $C$. Éste es $\{1,2,5,6,\ldots\}$ y el abierto más grande dentro es $A_2=\{1,2\}$. Por tanto, $ext(C)=\{1,2\}$. Finalmente, la frontera es el complementario del interior y exterior, es decir, $Fr(C)=\{3,4,\ldots\}$.

Trabajamos ahora con la topología $\tau_2$.  De nuevo, no hay ningún conjunto del tipo $B_n$ dentro de $C$, luego $int(C)=\emptyset$. Para el exterior, consideramos ${\mathbb N}-C=\{1,2,5,6,\ldots\}$. Es evidente que $B_5=\{5,6,\ldots\}$ es el abierto más grande, luego $ext(C)=B_5$. Y por tanto, $Fr(C)=\{1,2,3,4\}$.

Para la adherencia, y como $\overline{C}={\mathbb N}-ext(C)$, tenemos que la adherencia de $C$ para $\tau_1$ es $\{3,4,\ldots\}$ y para la topología $\tau_2$ es $\{1,2,3,4\}$. En ambos casos, la adherencia coincide con la frontera de $C$.

No hay comentarios:

Publicar un comentario