Loading web-font TeX/Math/Italic

jueves, 4 de octubre de 2012

Muchos entornos, entornos pequeños

Una vez conocido el concepto de base de entornos, nos podemos dar cuenta que más importante que saber si un entornos es 'grande' o no, más interesantes es poder controlar su número. 

Una vez que se explique el concepto de aplicación continua, se podrá intuir mejor que la idea de entorno se refiere a la 'cercanía' alrededor de un punto. Cuando uno tiene un entorno U de x, cualquier conjunto que contenga a U también es entorno de x. Por tanto, hay 'muchos' entornos. Otra cosa diferente es si un entorno es grande a cuanto 'tamaño'.

Espero que el siguiente ejemplo aclare estas ideas. Tomamos \mathbb{R} con la topología a derechas. Una base de entornos de x es \beta_x=\{[x,\infty)\}, es decir, la base SÓLO tiene un elemento. Sin embargo, [x,\infty) es 'grande' si uno compara con otros conjuntos que contenga a x pero que no son entornos, como sucede por ejemplo con el intervalo (x-1,x+1).

No hay comentarios:

Publicar un comentario