No hay una manera estándar de hallar el conjunto de puntos interiores de un conjunto en un espacio topológico. Con esta entrada en el blog lo que quiero indicar es que, al menos, para los ejemplos de espacios topológicos que se han dado en el curso hay, en cierto sentido, algunos métodos para hallar el interior del conjunto. Algunos consejos son:
1. Lo primero, y esto es muy importante, hay que saber de qué forma se da el espacio topológico, me refiero a si lo que se conoce son los abiertos, los cerrados, una base de la topología, los entornos o una base de entornos. De esta forma, tendremos que usar la caracterización correspondiente de punto interior. Por ejemplo, si se tiene los abiertos, un punto x es interior a un conjunto si existe un abierto O tal que
. Si lo que se tiene es base de entornos, entonces x será interior si existe V de la base de entornos tal que
.
1. Lo primero, y esto es muy importante, hay que saber de qué forma se da el espacio topológico, me refiero a si lo que se conoce son los abiertos, los cerrados, una base de la topología, los entornos o una base de entornos. De esta forma, tendremos que usar la caracterización correspondiente de punto interior. Por ejemplo, si se tiene los abiertos, un punto x es interior a un conjunto si existe un abierto O tal que
2. Haber trabajado anteriormente con el espacio topológico, es decir, estar familiarizado con él. Esto se habrá conseguido si se ha hecho ejercicios en dicho espacio topológico.
3. Si se conoce bien los abiertos, entonces se puede usar el hecho de que el interior de un conjunto es el mayor conjunto abierto dentro del conjunto. Esto se ha visto en R con la topología
4. Puede hacerse "punto por punto". El interior de un conjunto es un subconjunto del mismo. Por tanto, habría que ir punto a punto del conjunto y preguntarse si es interior o no. En R con la topología usual puede hacerse por ejemplo para el conjunto A=[0,1]. Es claro que los puntos del intervalo (0,1) son interiores. Sólo habría que estudiar si 0 y 1 lo son.
5. En R^n con la topología usual, un dibujo nos permite saber cuáles son los puntos interiores. En este caso, usamos base de entornos en cada punto (bolas centradas en el punto) y las bolas son fáciles de dibujar. Cuando uno hace un dibujo tiene que tener claro si lo que se está haciendo es un punto general, o el punto tiene alguna característica especial.